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Figure 1. Hybrid(Transformer+CNN)-based Polyp Segmentation Architecture

Abstract

Colonoscopy is still the main method of detection and
segmentation of colonic polyps, and recent advancements
in deep learning networks such as U-Net, ResUNet, Swin-
UNet, and PraNet have made outstanding performance in
polyp segmentation. Yet, the problem is extremely chal-
lenging due to high variation in size, shape, endoscopy
types, lighting, imaging protocols, and ill-defined bound-
aries(fluid, folds) of the polyps, rendering accurate seg-
mentation a challenging and problematic task. To address
these critical challenges in polyp segmentation, we intro-
duce a hybrid (Transformer + CNN) model that is crafted
to enhance robustness against evolving polyp characteris-
tics. Our hybrid architecture demonstrates superior per-
formance over existing solutions, particularly in address-
ing two critical challenges: (1) accurate segmentation of
polyps with ill-defined margins through boundary-aware at-
tention mechanisms, and (2) robust feature extraction in the
presence of common endoscopic artifacts including specu-
lar highlights, motion blur, and fluid occlusions. Quantita-
tive evaluations reveal significant improvements in segmen-
tation accuracy (Recall improved by 1.76%, i.e., 0.9555,
accuracy improved by 0.07 %, i.e., 0.9849) and artifact
resilience compared to state-of-the-art polyp segmentation
methods.

Keywords: Colorectal cancer(CRC), Polyp, Polyp seg-
mentation, colonic polyp, colonoscopy, CNN, Transformer

1. Introduction

Colon polyps are neoplastic polyps developing from the
lining epithelium of the colon or rectum. Incidence epi-
demiological data suggest a prevalence of approximately
30% among individuals over the age of 50 years [42]. Al-
though, in most cases, they are benign, a proportion among
them, especially adenomatous polyps, are liable to malig-
nancy by the stepwise adenoma-carcinoma sequence. This
shift carries critical clinical import, as CRC is still the third
most diagnosed malignancy within the United States, with
38 per 100,000 cases and a commensurate rate of death be-
ing 13 per 100,000 annually [42]. Colonoscopy is the cor-
nerstone of preventing CRC, with the ability to detect and
treat concomitantly via eliminating pre-malignant polyps.
Its use in the initial treatment decreases CRC mortality and
incidence by quite a lot [39], showcasing its value in prac-
tice.

Colonoscopy is a minimally invasive but very effective
diagnostic procedure for detecting colorectal polyps when
performed by skilled endoscopists. While helpful, existing
colonoscopy tests fail in the detection of 22-28 % of polyps
[40], which could develop into advanced cancers and de-
teriorating clinical outcomes. The process entails using a
colonoscope, a finger-thick, flexible tube containing a light
source, and a video camera passed transanally to observe
the colorectal mucosa. Integrated working channels allow
concurrent removal of polyps or biopsy when suspicious le-
sions are encountered [40].

Polyp shape is highly heterogeneous during stages of de-
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velopment. As seen in Fig. 2, variation of structural charac-
teristics, size measurements, and color characteristics pro-
vides difficult diagnostic issues at a high level. These are the
most demanding challenges for low-contrast small polyps
(< 5 mm) in size. These constraints lead to low rates of
detection, even being carried out by trained operators using
standard image gathering methods.

The clinical need for accurate segmentation of polyps
beyond detection is the need to precisely demarcate le-
sion boundaries to direct therapeutic interventions. Online
segmentation of polyp architectures (e.g., discrimination
between adenomatous and hyperplastic growth patterns)
would directly influence intraoperative decisions, allowing
for the complete excision of neoplastic lesions with spar-
ing of normal tissue when polyps are not neoplastic. De-
spite convolutional and transformer-based models achiev-
ing > 90% Dice scores on offline testing, clinical adoption
is strictly limited by some inherent limitations. Current ar-
chitectures cannot maintain diagnostic-grade segmentations
in true real-time endoscopy settings primarily because of
the computational delay involved in the processing of 1080p
video streams at 30fps. This is compounded by morpholog-
ical nuances: indistinct boundaries on sessile or flat polyps
decrease segmentation accuracy by 15–20% compared with
pedunculated lesions, and motion artifacts and specular re-
flections also degrade boundary precision. This underlying
conflict between model complexity (to provide pixel-level
precision) and inference speed (to provide clinical usability)
identifies the medical imperative for lightweight but robust
segmentation algorithms in gastrointestinal endoscopy.

To address these challenges, our work presented in this
paper contributes the following:

• We suggest a hybrid approach in which pre-trained
vision transformers are utilized for global feature ex-
traction and light-weight CNNs for spatial fine-tuning
to achieve precise polyp segmentation and minimize
computational complexity.

• Achieved the highest frames-per-second (FPS) along-
side state-of-the-art (SOTA) results in performance
metrics on various datasets (such as the Kvasir-SEG
dataset [25]), compared to other SOTA models like
NanoNet [28], ResUNet++ [27], and ResUNet++ +
CRF [24].

2. Related work
2.1. Classic methods

Early works proposed methods to address the problem of
polyp segmentation using classical image processing tech-
niques [38]. However, these methods struggled to achieve
satisfactory performance due to the similarity between the
polyps and the surrounding background.

Figure 2. Comparative visualization of polyp segmentation results
on the Kvasir-SEG dataset. From left to right: (a) Original en-
doscopic images, (b) Pixel-level ground truth annotations, and (c)
Predicted segmentation masks generated by our proposed model.

2.2. Convolution networks

Deep learning techniques [50, 36, 19] have immensely
enhanced the performance of polyp segmentation. U-Net
model [47] with its encoder-decoder in generic form and
skip connections is a smooth benchmark for segmenta-
tion of polyps. Its variations, such as U-Net++ [70], used
nested skip connections to visualize fine details while Re-
sUNet [68] and ResUNet++ [27] made use of residual
blocks to achieve smooth gradient propagation and feature
discovery. DoubleU-Net [23] further enhanced segmenta-
tion using a two-stage U-Net model, further advancing the
detection of small polyps.

Recent advancements have concerned attention mech-
anism boost and contextual modeling. PraNet [17] pro-
posed reverse attention and boundary refining and achieved
SOTA performance in a number of polyp benchmarks.
DDANet [33] also utilized dilated dual attention blocks to
boost contextual modeling, and UACANet-S/L [43] utilized
channel attention to concentrate on polyp regions. For ad-
dressing size variation, MSRF-Net and MSRFE-Net [63]
utilized multi-scale residual fusion and boosted segmenta-
tion of various polyp sizes.

Real-time segmentation effort has also been made. Jha
et al. [28] employed Conditional Random Field (CRF) post-
processing for enhancing contextual information, whereas
Thambawita et al. [55] proposed pyramid-based augmen-
tation for generalization. ColonSegNet [22] was explicitly
designed for real-time segmentation on the Kvasir and CVC
datasets, but with some loss of accuracy for the sake of
speed. Jha et al. [28] then created NanoNet, which is a
light model with three variants (NanoNet-A, NanoNet-B,
and NanoNet-C) that balance speed and accuracy. Among
these, NanoNet-A has greater accuracy with more param-
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eters, whereas NanoNet-C puts greater emphasis on speed
with fewer parameters.

2.3. Transformers networks

Transformers were originally proposed in natural lan-
guage processing (NLP) and delivered outstanding perfor-
mance [56]. Transformers use multi-head self-attention
(MHSA) layers for capturing long-range dependencies.
Dosovitskiy et al. [14] transferred transformers to computer
vision, presenting the Vision Transformer (ViT), which rep-
resents images as a sequence of patch embeddings. Al-
though ViT achieves good results in classification, low-
resolution, single-scale feature maps are hard to use in
dense prediction tasks such as segmentation and object de-
tection.

Pyramid Vision Transformer (PVT)-based models [62,
61] overcome these shortcomings using fine-grained
patches (4×4 per patch) and hierarchical pyramid architec-
ture for high-resolution feature learning in a computation-
ally less demanding process. Trailblazing PVT, Dong et
al. [13] proposed Polyp-PVT, a polyp segmentation net-
work that augments feature extraction using a transformer
encoder and multi-level feature fusion.

Some other improvements include TransUNet [12],
which combines ViT with U-Net to retain global context
while maintaining precise localization. Swin-UNet [11]
and Swin-UNETR [18] utilize better spatial efficiency
through shifted window attention for enabling better
scalability for high-resolution medical images. For
colonoscopy segmentation, FCB-Former and its extension
FCB-Former+SEP [67] combine convolutional and trans-
former blocks to improve feature representation. Lastly,
NanoNet-A/C [60] provide light-weight architectures op-
timized for deployment on edge devices with an attempt to
balance efficiency with accuracy.

3. Proposed Architecture
Existing hybrid Transformer-CNN segmentation models

hardly reach the full potential of synergies between global
attention and local feature extraction. We resolve this with
a thoughtfully crafted Swin Transformer-CNN architecture
with three innovations: (1) adaptive fusion modules to bal-
ance transformer and CNN features adaptively across dif-
ferent scales, (2) context-preserving skip connections that
preserve spatial accuracy, and (3) a computationally effi-
cient cross-attention bridge. The last structure illustrates en-
hanced performance in medical image segmentation, where
current approaches fail to capture anatomical context and
fine boundaries at the same time.

3.1. Encoder: Swin Transformer Backbone

We used a transformer-based backbone to perform multi-
scale features extraction in encoding. It starts with an input

RGB image X of size RH×W×3. It conditions the image as
it passes through the backbone to increasingly four stages
at different resolutions. The model in every stage produces
feature maps of certain spatial sizes and channel depths.

F1 ∈ R
H
4 ×W

4 ×C (Stage 1)

F2 ∈ R
H
8 ×W

8 ×2C (Stage 2)

F3 ∈ R
H
16×

W
16×4C (Stage 3)

F4 ∈ R
H
32×

W
32×8C (Stage 4)

(1)

where Fi denotes level i features with decreasing spatial
resolutions and deeper channels. The Swin Transformer’s
shifted window self-attention supports efficient modeling of
long-range dependencies without the loss of computational
efficiency.

3.2. Decoder: Feature Fusion and Upsampling

The decoder generates high-resolution predictions via
upsampling and feature fusion operations. Decoder block
Di is comprised of:

1. The features are first processed by a 33 convolutional
layer with batch normalisation and ReLU activation.

F̂i = σ(BN(Conv3×3(Fi))) (2)

where σ denotes the ReLU activation function.

2. Bilinear up-sampling (×2) to achieve spatial resolution
restore:

F̃i = Upsample×2(F̂i) (3)

The decoder increasingly integrates features through
skip connections:

D4 = D4(F4),

D3 = D3(Concat(D4,F3)),

D2 = D2(Concat(D3,F2)),

D1 = D1(Concat(D2,F1)).

(4)

3.3. Final Prediction Layer

The decoder output D1 ∈ RH
2 ×W

2 ×64 is mapped to the
target mask space through a 1× 1 convolution:

Y = Conv1×1(D1), Y ∈ R
H
2 ×W

2 ×K , (5)

where K is the number of classes. Another bilinear in-
terpolation generates the prediction in the input resolution:

Ŷ = Upsample(Y, size = (H,W )). (6)

3



Table 1. Comparison of publicly available polyp detection/segmentation datasets.
Dataset Name (Year, Country) Ground Truth Images Resolution
CVC-ColonDB (2013, Spain) [7] Binary Mask 380 500×574
ETIS-LaribPolypDB (2014, France) [48] Binary Mask 196 1225×966
CVC-ClinicDB (2015, Spain) [5] Binary Mask 612 576×768
ASU-Mayo (2016, USA) [54] Binary Mask + BBox 18,781 512×512
GI Lesions (2016, France) [3] Annotated File + BBox 30 videos 768×576
EndoScene (2016) [44] Binary Mask 912 224×224
CVC-ClinicVideoDB (2017) [8] Binary Mask 11,954 frames 384×288
Kvasir-SEG (2019, Norway) [26] Binary Mask + BBox 1,000 320×320
KvasirCapsule-SEG (2019, Norway) [52] BBox 47,238 Varies
NBIPolyp-Ucdb (2019, Portugal) [45] Binary Mask 86 576×720
WLPolyp-UCdb (2019, Portugal) [45] Annotated File 3,040 726×576
KUMC (2020, Korea) [29] BBox 4,856 224×224
SUN (2020, Japan) [31] BBox 49,136 416×416
PICCOLO (2020, Spain) [21] Binary Mask 3,433 854×480
CP-CHILD (2020, China) [32] Annotated File 9,500 256×256
EDD2020 (2020, International) [1] BBox + Binary Mask 386 videos Varies
HyperKvasir (2020, Norway) [10] Binary Mask 10,662 224×224
Kvasir-Capsule (2021, Norway) [20] BBox 47,238 Varies
LD Polyp Video (2021, China) [34] BBox 40,187 frames 560×480
SUN-SEG (2022, Japan) [16] Multiple types 158,690 416×416
PolypGen (2022, Multi-center) [2] Binary Mask + BBox 6,282 Various

4. Implementation details

We implemented our hybrid model in PyTorch frame-
work and evaluated on an NVIDIA GeForce RTX 4090
GPU with 24GB VRAM. For handling variations in polyp
image sizes, a multi-scale approach was employed dur-
ing training. AdamW optimizer, which is appropriate for
transformer-based models, was utilized with learning rate
of 1× 10−4 and weight decay of 1× 10−4. The loss func-
tion combined binary cross-entropy (BCE) and Intersection
over Union (IoU) to optimize segmentation accuracy.

Input images were downsized to 352 × 352 pixels, with
a mini-batch of size 8, for 100 epochs. Training took about
1 hour, and best coscusative performance was at epoch 63.
In an effort to avoid overfitting, an early stopping condition
was used, inspecting the Dice score on the test set after ev-
ery epoch. Training was stopped if no progress had been
made in the last 37 epochs, which happened at epoch 63.

During training, the data augmentation processes like
random rotation, flip left-right, and flip top-bottom were uti-
lized. Images were rescaled to 352 × 352 during test time
without any extra post-processing or optimization tech-
niques. This method possessed strong performance with
low computational cost.

5. Experiments

5.1. Datasets

We used our approach to the Kvasir-SEG dataset, which
contains 1000 polyp images that are subclasses of the

Kvasir polyp class. We divided the dataset into 900 im-
ages for training purposes and 100 images for the test set.
Training was carried out once while cross-validation was
applied solely on the test set within the Kvasir dataset. As
can be seen from Table ??, we achieved a test set accuracy
of 0.987.

For further testing, we have tested the model on four test
datasets, i.e., CVC-ClinicDB, ETIS, CVC-ColonDB, and
Endotect. The test datasets are of a variety of polyp images
for which generalizability estimation is possible with relia-
bility. ETIS contains 196 images, CVC-ColonDB contains
380 images, CVC-ClinicDB contains 612 images, and En-
dotect contains 1000 images. Multi-dataset testing provides
a certain realization about method performance in various
clinical conditions. The list of all the datasets is as depicted
in figure 1.

Datasets:https://bit.ly/polyp-datasets

5.2. Evaluation metrics

For the purpose of measuring our model, our chosen met-
rics are: Dice Score Coefficient (DSC), mean Intersection
over Union (mIoU), Precision, Recall, F2, Accuracy, and
Frames-per-Second (FPS).
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Figure 3. Evaluation of our model in the Kvasir-SEG dataset, fifty epochs

IoU =
TP

TP + FP + FN
(7)

DSC =
2× TP

2× TP + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall/Sensitivity =
TP

TP + FN
(10)

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

F2-score =
5× Precision × Recall
4× Precision + Recall

(12)

FPS =
Frames Processed

Time (seconds)
(13)

6. Results
We evaluated our model and compared its performance

against recent state-of-the-art (SOTA) polyp segmentation
models. The evaluation metrics, as shown in table 2, were
used for benchmarking. On the Kvasir-SEG dataset, our
method achieved a recall score of 0.9555, which is 1.76 %
higher than the existing real-time SOTA method DUCK-
Net. Similarly, the accuracy reached 0.9849, reflecting a
little improvement in the existing DUCK-Net.

7. Conclusion
In this paper, we present high accurate image polyp seg-

mentation, called Hybrid(Transformer + CNN), which in-
corporates a vision transformer backbone for efficient fea-
ture extraction with CNN skip connection layers. Experi-
mental results on various endoscopy datasets demonstrate

that our model achieves state-of-the-art performance across
key metrics, including DSC, IoU, precision, recall, F2-
score, and, crucially, FPS with resonalbale model param-
eters and inference speed.

We believe hybrid architecture offers significant poten-
tial for detecting pathological and abnormal tissues within
the colon lining. One of its key advantages is the ability
to identify flat polyps in challenging regions like variation
in size, shape, endoscopy types, lighting, imaging protocols
of the colon and detect small lesions that might be over-
looked during standard endoscopy. Besides this, it can also
help differentiate residual tissue after polyp removal during
colonoscopy, ensuring total removal and reducing the recur-
rence risk.

We hope our work inspires other researchers to tackle
real-time polyp segmentation tasks using hybrid-based net-
works. Beyond endoscopy, we envision hybrid architecture
being applied in other medical fields. For example, it can as-
sist with early diagnosis of polyp. By enhancing outcomes
in cases that are under subjective clinical judgments, our
technique might maximize patient therapy.

We believe our proposed method has broad implications
and can contribute to advancing medical imaging and inter-
vention techniques across multiple specialties.
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Resunet++: an advanced architecture for medical image seg-
mentation. In Proceedings of IEEE International Symposium
on Multimedia (ISM), pages 225–255, 2019. 2, 6

[28] Debesh Jha, Nikhil Kumar Tomar, Safdar Ali, et al. Nanonet:
real-time polyp segmentation in video capsule endoscopy
and colonoscopy. In Proceedings of IEEE International Sym-
posium on Computer-Based Medical Systems (CBMS), pages
37–43, 2021. 2

[29] Tae Kyoung Kim, Chan Ho Park, Chang Min Lee, Min Ju
Kang, and Hyun Gun Kim. Deep learning-based detection of
polyps in colonoscopy. Scientific Reports, 10(1):1–9, 2020.
4

[30] Yuan Li, Hao Chen, Manning Wang, and Xiaolong Zhang.
Li-segpnet: A lightweight pyramid network for real-time
polyp segmentation. IEEE Transactions on Medical Imag-
ing, 41(5):1124–1135, 2022. 6

[31] Daochang Liu, Ziyu Jiang, Yizhou Wang, Qiang Wang, Fei
Wang, Ziyu Li, and Changhu Wang. Sun: A large-scale
dataset for surgical understanding. IEEE Transactions on
Medical Robotics and Bionics, 2(1):41–48, 2020. 4

[32] Jiang Liu et al. Cp-child: A pediatric colon polyp dataset.
Scientific Data, 7(1):1–8, 2020. 4

[33] Jiang Liu, Tengfei Song, Meng Li, Linlin Qiao, Yitian Zhao,
and Yunde Jia. Ddanet: Dual decoder attention network
for automatic polyp segmentation. Pattern Recognition,
122:108318, 2022. 2

[34] Xiaoyu Liu et al. Ld polyp video: A large-scale colonoscopy
video dataset. Medical Image Analysis, 70:101987, 2021. 4

[35] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. ICCV, 2021.

[36] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3431–3440, 2015. 2

[37] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations (ICLR), 2019.

[38] Alexander V. Mamonov, Isabel N. Figueiredo, Pedro N.
Figueiredo, and Yu-Hsiang R. Tsai. Automated polyp de-
tection in colon capsule endoscopy. IEEE Transactions on
Medical Imaging, 33:1488–1502, 2014. 2

[39] T. Matsuda, A. Ono, M. Sekiguchi, T. Fujii, and Y. Saito.
Advances in image enhancement in colonoscopy for detec-
tion of adenomas. Nature Reviews Gastroenterology Hepa-
tology, 14:305–314, 2017. 1

[40] The American Cancer Society Medical and Edito-
rial Content Team. Understanding your diagno-
sis: Colonoscopy. https://www.cancer.org/
treatment/understanding-your-diagnosis/
tests/endoscopy/colonoscopy.html, n.d.
Accessed: YYYY-MM-DD. 1

[41] Khairul Munadi, Khairunnisa Saddami, Masayu Oktiana,
et al. A deep learning method for early detection of dia-
betic foot using decision fusion and thermal images. Applied
Sciences, 12:7524–7545, 2022.

[42] NIH. Cancer stat facts: Colorectal cancer. http:
//www.seer.cancer.gov/statfacts/html/
colorect.html, n.d. Accessed: YYYY-MM-DD. 1

[43] Seung-Jun Oh, Hyun Kim, Sang-Hoon Oh, and Seung-Won
Lee. Uacanet: Unified adaptive context-aware network for
polyp segmentation. In Proceedings of the 29th ACM In-
ternational Conference on Multimedia, pages 1762–1770.
ACM, 2021. 2

[44] Konstantin Pogorelov, Klaus R Randel, Carsten Griwodz,
Sigrun L Eskeland, Thomas de Lange, Dag Johansen, Con-
cetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux,
Peter T Schmidt, et al. Deep learning and hand-crafted fea-
tures for automatic polyp detection. In IEEE International
Conference on Multimedia & Expo Workshops, pages 1–6,
2017. 4

[45] Sara Reis, Guilherme Macedo, Cláudia Bahia, and Miguel T
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